FASN Inhibition and Taxane Treatment Combine to Enhance Anti-tumor Efficacy in Diverse Xenograft Tumor Models through Disruption of Tubulin Palmitoylation and Microtubule Organization and FASN Inhibition-Mediated Effects on Oncogenic Signaling and Gene Expression
نویسندگان
چکیده
Palmitate, the enzymatic product of FASN, and palmitate-derived lipids support cell metabolism, membrane architecture, protein localization, and intracellular signaling. Tubulins are among many proteins that are modified post-translationally by acylation with palmitate. We show that FASN inhibition with TVB-3166 or TVB-3664 significantly reduces tubulin palmitoylation and mRNA expression. Disrupted microtubule organization in tumor cells is an additional consequence of FASN inhibition. FASN inhibition combined with taxane treatment enhances inhibition of in vitro tumor cell growth compared to treatment with either agent alone. In lung, ovarian, prostate, and pancreatic tumor xenograft studies, FASN inhibition and paclitaxel or docetaxel combine to inhibit xenograft tumor growth with significantly enhanced anti-tumor activity. Tumor regression was observed in 3 of 6 tumor xenograft models. FASN inhibition does not affect cellular taxane concentration in vitro. Our data suggest a mechanism of enhanced anti-tumor activity of the FASN and taxane drug combination that includes inhibition of tubulin palmitoylation and disruption of microtubule organization in tumor cells, as well as a sensitization of tumor cells to FASN inhibition-mediated effects that include gene expression changes and inhibition of β-catenin. Together, the results strongly support investigation of combined FASN inhibition and taxane treatment as a therapy for a variety of human cancers.
منابع مشابه
Inhibition of de novo Palmitate Synthesis by Fatty Acid Synthase Induces Apoptosis in Tumor Cells by Remodeling Cell Membranes, Inhibiting Signaling Pathways, and Reprogramming Gene Expression
UNLABELLED Inhibition of de novo palmitate synthesis via fatty acid synthase (FASN) inhibition provides an unproven approach to cancer therapy with a strong biological rationale. FASN expression increases with tumor progression and associates with chemoresistance, tumor metastasis, and diminished patient survival in numerous tumor types. TVB-3166, an orally-available, reversible, potent, and se...
متن کاملDe Novo Palmitate Synthesis Supports Oncogenic Signalling and Tumor Growth Through Diverse Mechanisms: Implications for FASN-Targeted Therapeutics
Palmitate, the enzymatic product of fatty acid synthase (FASN), provides a substrate for the synthesis of longand short-chain fatty acids. Many recent studies have expanded our knowledge about the roles palmitate and lipid synthesis play in tumor cell biology beyond supporting energy metabolism and membrane building [1,2]. The recent article by Ventura and colleagues [3] described cell biology ...
متن کاملFatty Acid Synthase Is a Key Target in Multiple Essential Tumor Functions of Prostate Cancer: Uptake of Radiolabeled Acetate as a Predictor of the Targeted Therapy Outcome
Fatty acid synthase (FASN) expression is elevated in several cancers, and this over-expression is associated with poor prognosis. Inhibitors of FASN, such as orlistat, reportedly show antitumor effects against cancers that over-express FASN, making FASN a promising therapeutic target. However, large variations in FASN expression levels in individual tumors have been observed, and methods to pre...
متن کاملMAPK/P53-mediated FASN expression in bone tumors
The correlation between mitogen-activated protein kinase (MAPK)/P53 signaling-dependent fatty acid synthase (FASN) expression and bone tumors was examined in the present study. We established the SH081 bone tumor cell line, which was used to determine the expression of FASN and MAPK/P53 at the mRNA and protein levels in bone tumor cells and normal cells. Compared with the normal cells, the expr...
متن کاملFatty acid synthase mediates EGFR palmitoylation in EGFR mutated non‐small cell lung cancer
Metabolic reprogramming is widely known as a hallmark of cancer cells to allow adaptation of cells to sustain survival signals. In this report, we describe a novel oncogenic signaling pathway exclusively acting in mutated epidermal growth factor receptor (EGFR) non-small cell lung cancer (NSCLC) with acquired tyrosine kinase inhibitor (TKI) resistance. Mutated EGFR mediates TKI resistance throu...
متن کامل